
1

Performance Analysis of Accelerated Linear Algebra Compiler for
TensorFlow

Parth Chadha, Tejus Siddagangaiah
pchadha@andrew.cmu.edu, tsiddaga@andrew.cmu.edu

Machine learning algorithms are being widely used in systems
for autonomous driving, image recognition, language translation.
TensorFlow is an environment used by researchers to imple-
ment and test such systems. C++/Python is used as the front-
end language to implement systems using TensorFlow. Until
recent times, TensorFlow was executed on a system by run-
time interpretations due to which no compiler level optimizations
were performed. Google released an Accelerated Linear Algebra
Just-in-time compiler for TensorFlow to optimize applications to
improve speed, memory usage, portability and improved mobile
footprint. In our work, we propose to analyze the performance
of XLA compilation tool on machine learning algorithms like
Convolutional Neural Networks, Long Short Term Memory and
custom control flow graphs. If time permits, we aim to identify
the issues and bottlenecks of the compiler and optimize both the
compilation process or design control flow graphs taking these
constraints into account.

I. INTRODUCTION

Researchers have used Machine Learning algorithms in the
last decade to solve complex problems of Computer Vision,
Natural Language Processing, robotics, information retrieval
and medical research to name a few. Few of the tools used
in machine learning research include TensorFlow, Torch and
Caffe. TensorFlow [1] is an interface for expressing such
algorithms and implementation for executing these algorithms.
An algorithm expressed using TensorFlow can be ported
across platforms with little to no change from general purpose
CPUs, GPUs and distributed computing platforms. The tool is
quite flexible and is extensively used to train and infer large
Convolutional Neural Networks and Long Short Term Mem-
ory(LSTM) based algorithms. In TensorFlow, computations
are described using data-flow like model and the computations
are mapped on to a different hardware right from Android
based mobile platforms, CPUs and GPUs.
A TensorFlow computation is described using a data-flow
model described by a graph composed of a set of nodes.
Programmers typically construct a computational graph using
one of the front-end languages - Python or C++. The nodes
are used to maintain the state of the program and the dataflow
(loops and branches) of the program is maintained using edges
connecting these nodes. Each node has a zero or more inputs
and zero or more outputs. During the graph construction pro-
cess, the operations that have to be performed are represented
in the nodes and each operation can have several attributes
which are provided or inferred from the graph. Each node is
represented by an operation such as MatMul, Add, ReLU with
one or more inputs. A kernel is a particular implementation of
these operations and are designed according to the platform.

These kernels are invoked at runtime according to traversal in
computation graph, and the inputs, attributes for the kernels
are managed at runtime.

These kernels are optimized implementations of operations
and some of the libraries used for GPU kernels are cuBLAS,
cuDNN, cuda-convnet. The nodes of the graph are executed in
the control-flow order of the graph to maintain dependencies
across nodes.

Google recently released an Accelerated Linear Alge-
bra(XLA) compiler [3] [2] for TensorFlow to improve the
execution speed, memory usage mobile footprint and improved
portability of machine learning applications. XLA compiler
provides the support for Just-In-Time compilation, which gives
the following advantage:

• Fused pipeline operations to reduce memory overhead
• Memory usage analysis to eliminate intermediate buffer

usage
• Fusing of operations/kernels to form a low-level op

to match the performance of custom tuned low level
operations

In the next section we describe XLA in detail.

II. ACCELERATED LINEAR ALGEBRA COMPILER(XLA)

XLA is a domain specific linear algebra compiler that
optimizes the vector operations in machine learning algorithms
implemented in TensorFlow. The XLA optimizations can
be performed in two ways: Just-in-Time(JIT) or Ahead-of-
Time(AOT). JIT compilation is performed to optimize the
computational graph at runtime and perform fusing of op-
erations. AOT compilation can be used to generate binaries
for a specific architecture(mobile platform) so that runtime
inference and Just-In-Time compilation is not required.

A. Just-In-Time Compilation

Just-In-Time compilation or dynamic translation is compil-
ing the program during run-time. The compilation tool chain
translates the front end program to machine code during run-
time. The code is compiled when a particular section, function
or file is about to be executed. A popular example of Just-
In-Time compilation is how a Java virtual machine compiles
the byte code into machine code at run-time. One of the key
advantages of JIT is that the code is portable. Architecture
specific optimizations can be performed at run-time.



2

Fig. 1. XLA compilation process

B. Ahead-Of-Time Compilation

XLA compiler also supports AOT compilation, where
the code is compiled into a machine dependent byte code.
XLA AOT compilation aims at generating code for mobile
computing platforms where additional environments cannot
be used for just in time compilation.

Figure 1 shows the compilation process of XLA. The input
to the XLA compiler is the High Level Optimizer Intermediate
Representation. A target independent optimization is
performed on this intermediate representation. Using the
optimized IR, a target-dependent analysis is done and
optimzations are performed. Finally, an LLVM based
compiler backend is used to generate the target specific code.
The XLA currently supports backend for x86 processors and
Nvidia GPUs.

C. Cluster Formation

The XLA compiler performs cluster identification and trans-
formation as shown in Figure 2. A cluster of TensorFlow nodes
are identified by the compiler and it performs optimization and
JIT compilation for these sets of clustered nodes. Compiling
subgraphs helps in the following ways:

• Reducing the execution time of short-lived Ops and
eliminates the overheads from the TensorFlow runtime

• Fuse pipelined operations help in reducing memory over-
head

• Specialization to known tensor shapes in XLA compila-
tion helps to allow for more aggresive constant propoga-
tion.

Fig. 2. Cluster formation in XLA

III. EXPERIMENTAL SETUP

We started with setting up the XLA compilation tool
with TensorFlow. As per this date, the XLA compilation
tool-chain is not included in default TensorFlow installation
and requires compiling from source with added support of
XLA. During this phase, it is also required to compile if
CUDA support is required or not. Since we do not currently
have a GPU available, all our experimentation is based on
CPU (Macbook Air, Intel Core i5,1.6Ghz, Dual-core with 2
way hyperthreading).

XLA performs multiple optimizations on the HLO-IR as
listed below:

• Dead Code Elimination
• Common Subexpression elimination
• Matrix Transpose
• Algebraic Simplifier
• Transpose Folding
• Cpu Layout Assignment

The effect of some of these optimizations were evaluated
and the most significant optimization is discussed in the next
section.

XLA uses LLVM as the back-end to generate architecture
specific binary. LLVM’s optimization level (-O0 to -O3) can be
controlled from within the XLA source code. Our experiments
were performed with various optimization levels and the
results are discussed in the next section.

• Two layer Convolutional Neural Network: The Convo-
lutional Neural Network trained for MNIST dataset for
200,000 iterations.

• SAXPY: A simple SAXPY operation of Z = AX + Y .
This test was performed to evaluate fusing multiply and
add operation to utilize cache and optimize memory
bandwidth.

• Matrix Multiplication: Matrix Multiplication was per-
formed with XLA compilation enabled. This test case
checks for Matrixmultiply fusion to create a common
kernel for a× b× c.

• Softmax: Softmax is a common operation performed in
Machine Learning. Softmax operation is defined as :
exi /

∑
exj



3

This test case evaluates fusing of operations performed
by XLA.

• Long Short Term Memory: A simple LSTM test case
is written to evaluate the performance gains of XLA
compilation as the input size and the LSTM parameters
are varied.

We performed experimentation with and without XLA com-
pilation for both of the above listed networks. Table I shows
the runtime observed for all listed configurations.

IV. EVALUATION

A. Analysis of results

We observed that the optimization of Just-In-Time compi-
lation is highly dependent on:

• Computational Graph Structure
• Extend to which the given computational graph can be

clustered based on whether particular operations/kernels
have XLA support or not

In this section we provide the analysis of computation graph
for various operations described above. We have provided
empirical evidence for complex computation graphs only as
they provide meaningful data for analysis. Whereas the small
computation graphs take negligible time to execute and can’t
be used for rigourous analysis.

The analysis of computational graphs we experimented with
are presented below:

B. SAXPY

SAXPY operation involves 1 matrix multiplication and 1
addition and its arithmetic intensity is very low due to high
number of memory access. The computation graph of SAXPY
is as shown in Figure 3. The graph on left shows computation
graph without XLA compilation and the one on right is with
XLA compilation. XLA compiled graph shows the multiply
and add unit to be fused together and this performs operation
fusion. With the use of operation fusion, extra cycles required
for memory read in add operation are avoided.

Fig. 3. SAXPY: Before and After XLA compilation

C. Matrix Multiplication

Matrix multiplication computation graph was defined as
follows:

• Step 1: temp = a× b
• Step 2: res = temp× c

Figure 4 shows the computation graph obtained with and
without use of XLA.

Fig. 4. Matrix Multiplication: Before and After XLA compilation

As seen from the computation graph for matrix multiplica-
tion with XLA, the matrix multiplication operations are fused
together to form a common kernel.

D. SoftMax

Softmax operation exi /
∑
exj involves point-wise exponen-

tial over the input vector, reduction of the computed exponen-
tial vector and division operation. Since this operation can lead
to numerical instability, we often apply a trick of subtracting
from the maximum element in vector and then applying the
above operations.
The computation graph of the Softmax is as shown in Figure
5. XLA compiled graph on the right shows that XLA fuses the
point-wises subtraction from maximum and exponential oper-
ations to form a combined kernel. This helps in efficient use of
memory operations because the same memory element can be
used for subtraction and exponential without reading/writing
from memory.
Also, we observed that the XLA compilation does not fuse
reduction operation in computational graphs and these opera-
tions are performed without JIT compilation.

E. CNN for MNIST dataset

All the test cases described before this involved simple
operations. We have chosen convolutional neural network [5]
as a test case because it performs all of the above operations
multiple times and results in meaningful emperical data for
our analysis. The network is trained using the MNIST dataset
for 200,000 iterations.

The Neural Network was trained with multiple XLA con-
figurations and without XLA JIT compilation. We observed
a significant difference in the runtimes and the results are
shown in table I. As a baseline implementation, we executed



4

Fig. 5. SoftMax: Before and After XLA compilation

TABLE I
EXPERIMENT RESULTS OF MNIST NETWORK

Optimizations Runtime
Baseline 605.03s
XLA - LLVM - O0 1041.77s
XLA - LLVM - O3 448.77s
XLA - HLO Optmization (No Matrix Transpose) 524.11s

our neural network code without XLA compilation and the
runtime is 605.03s. The same experiment was executed with
XLA enabled and we achieve a speedup of 1.34x. We achieve
this speedup due to a few key optimizations performed by
XLA:

• Optimized Libraries for Matrix Multiplication: XLA uses
optimized libraries like Eigen to perform matrix mul-
tiplication and convolution operations. Usage of highly
optimized libraries to generate the in-memory binary has
a significant impact on the performance.

• Matrix Transpose: At the HLO-IR, XLA performs an
optimization called Transpose Folding:, which performs
matrix transpose to improve cache locality. Disabling this
optimization decreased the performance and the speedup
reduced to 1.15x.

• Multi-threaded operations: XLA utilized multi-core CPU
architectures by dividing the workload of Convolution
and Matrix Multiplication across different cores. Usage of
Eigen library with multi-threaded computation improves
the performance further.

The optimization level of LLVM backend can be controlled
through the XLA source code. The optimization level was
changed to -O0 and the performance degraded significantly
to 0.58x.

To analyze if there was further scope of optimization within
the LLVM backend, we dumped the LLVM IR generated by
XLA to .ll files. As linking a custom LLVM build was out of

TABLE II
EXPERIMENT RESULTS

LSTM Matrix Size Runtime w/ XLA(s) Runtime w/o XLA(s)
10 0.56 0.063
20 1.176 0.063
50 0.388 0.082

100 0.466 0.250
250 1.006 3.22
500 4.469 24.14
600 8.33 51.07
750 57.95 513.76
1024 1057.1 Not Available

the project scope, we used the XLA generated LLVM IR and
ran optimization passes on these. We observed that LLVM-
3.7 optimized the LLVM IR (Loop Unrolling) further with the
standard -O3 flag. However, we were not able to compare the
runtimes as the generated LLVM IRs are modules without a
main function.

F. LSTM

A LSTM [4] cell operation includes 8 matrix-matrix mul-
tiplication and a number of point-wise addition operations as
shown in equations 1-6. XLA improves the performance of
LSTM cells significantly. Matrix size of the LSTM cell was
varied from 10 to 1024, the runtimes for these configurations
are shown in table II. When the matrix size is small, the XLA
JIT compilation is becomes a overhead and the performance
decreases as expected. However, as the matrix size increases,
XLA improves the performance significantly. The change in
speedup as the matrix size varies is shown in figure 6. There
is an exponential increase in performance with XLA as the
matrix size increases, this is due to the kind of optimizations
XLA performs as explained in section IV-E.

it = sigm(θxi ×Xt + θhi × ht−1 + bi) (1)

ft = sigm(θxf ×Xt + θhf × ht−1 + bf ) (2)

ot = sigm(θxo ×Xt + θho × ht−1 + bo) (3)

gt = sigm(θxg ×Xt + θhg × ht−1 + bg) (4)

ct = ft · ct−1 + it · gt (5)

ht = ot · tanh(ct−1) (6)

Another key observation with respect to XLA optimization
was regarding the memory consumption of Tensorflow code.
As the matrix size increases, the memory consumed by
Tensorflow increases significantly. For our LSTM test case,
with matrix size 1024, the memory utilized without XLA
is approximately 25.46GB. There is a significant reduction
in the memory usage with XLA and the memory utilized
reduces to approximately 16.25GB. During the execution,
we observed that maximum time was spent on fetching the
data from memory than on computation. The CPU usage
during the execution is shown in Figures 7 and 8. The CPU
utilization goes as low as 7.16% while the kernel spends
majority of the time to fetch the data from Swap Memory
(36.65%). During LSTM computation, the system utilizes



5

Fig. 6. Speedup with XLA for LSTM Cells

maximum RAM available to the CPU and uses the SWAP
memory extensively.This improvement in performance is
mainly due to the techniques used by XLA for optimum
buffer assignment.

Fig. 7. CPU usage during LSTM execution

Fig. 8. Memory usage during LSTM execution

V. CHALLENGES FACED

We invested a lot of time into reading the documenta-
tion/code of XLA and setting up the compilation environment.
Unfortunately since the XLA project is still new, there are a
lot of gaps in documentation and tutorials available. We have
listed below few of those concerns:

• No documentation for linking custom LLVM build with
XLA compilation environment. As a stretch goal, we had
planned to experiment with custom LLVM passes over
the LLVM IR generated by XLA for optimization. We
have shown that is there is scope for improvement in
LLVM optimizations for XLA generated IR via exper-
imenting on the IR level, we were not able to execute
these .ll files due to a lot of dependencies.

• Lack of documentation for observing the spilled out
assembly code on CPU/GPU. The spilled out CPU/GPU
code is demonstrated in Google’s XLA presentation, but
it seems it is just an internal tool used by Google and not
open-sourced.

• Not enough documentation for understanding of the com-
putational graph, since it produces 100’s of graph files
during optimization process

VI. CONCLUSION

In this project, we performed extensive analysis of Ac-
celerated Linear Algebra Compiler (XLA) for TensorFlow
compuation graphs. The algorithms chosen for the evaluation
are popular machine learning algorithms. The test cases written
result in complex data flow graphs, which enables XLA to
exploit maximum cluster formation and perform aggressive
optimizations.

The goals of the project during the proposal stage are listed
below:

• 75% Goal: In detail analysis of two experiments men-
tioned above.

• 100% Goal: In detail analysis of all the experiments with
suggestions to improve performance for the identified
bottlenecks or issues.

• 125% Goal: Implement or change the compiler im-
plementation to improve performance for the identified
bottlenecks or issues.

We have successfully achieved our 100% goal. However,
our stretch goal involved linking XLA with a custom LLVM
build. Due to the lack of documentation, we were not able to
build an end-to-end working Tensorflow binary with custom
LLVM build. We dumped the XLA generated LLVM IRs and
performed experimented with different optimization passes
on them with LLVM-3.7. After analyzing the two IRs, we
observed that there is scope for futher optimizations at both
HLO-IR and LLVM-IR level.

VII. DISTRIBUTION OF TOTAL CREDIT

Both Parth and Tejus worked on this project together and
we have each contributed 50%.

REFERENCES

[1] Martı́n Abadi et al. “Tensorflow: Large-scale machine
learning on heterogeneous distributed systems”. In: arXiv
preprint arXiv:1603.04467 (2016).

[2] Jeff Dean. XLA Jeff Dean presentation. URL: https : / /
autodiff-workshop.github.io/slides/JeffDean.pdf.

[3] Google. XLA Compilation:Google. URL: https : / /www.
tensorflow.org/performance/xla/.

[4] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-
term memory”. In: Neural computation 9.8 (1997),
pp. 1735–1780.

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
“Imagenet classification with deep convolutional neural
networks”. In: Advances in neural information process-
ing systems. 2012, pp. 1097–1105.


