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1 Introduction

Recently, deep convolutional networks have shown manifold performance improvement over other
type of networks. The key reason is the inherent feature sharing over different categories. This
proves that deliberately sharing features among different, but related, categories can enhance the
performance of varieties of tasks, for example segmentation attribute classification and even surface
normal prediction.

Multi-task learning is a subtype of transfer learning with an approach to learn related tasks within
a similar domain, as an inductive bias, to improve generalization. By sharing domain information,
related tasks are learned together in parallel and achieve better performance over tasks learned in
isolation, especially when the labels of the target task are scarce.

This conventional approach faces problems when the relationship between tasks can not be predeter-
mined because of the lack of specific domain knowledge or due to a high number of tasks. Basically
there is no insights or theoretical principals in how much of the representation to share among tasks.
This problem has motivated recent Deep Learning methods to learn the relationship between the
shared and task-specific representations.

This work investigates multi-task learning on different networks to improve the performance of
facial landmark detection by using attribute classification as auxiliary tasks in conjunction. We have
applied three different network architectures on the facial landmark detection task and compared
with the baseline of single task facial landmark detection. Additionally, we have proposed a weight
regularization method adapted from multi-domain learning and show that it improves the performance
of the split and cross-stitch network without much fine tuning of parameters. We intend to find a
more generalized approach towards multi-task learning in Convolutional Neural Networks (CNN).

2 Related Works

Multi-task learning spans a broad scope in machine learning e.g. computer vision [1], genomic [2],
natural language processing [3]. This includes representation learning and selection [4], transfer
learning [5], etc. Though multi-task learning has been used in different forms in different application,
for this paper, we will consider multi-task learning in the context of CNNs used in computer vision.
Multi-task learning in CNNs has been used to model related task in a joint manner for example
semantic segmentation and surface normal prediction[1], pose estimation and action recognition [6],
facial landmark detection and attribute classification [7], auxiliary tasks detection [8] etc.

Even though CNNs learn representations shared across different categories of a task, it is still
difficult to design architectures using the same representation to perform different tasks. Sharing
representations between multiple tasks in CNNs improves the performance [9], however there exists
a problem with which layers to transfer. Depending on the problem at hand, there is a spectrum of
possible way of sharing tasks by splitting the CNN at different layers.



Existing multi-task learning architectures experiment with varying the number of layers shared
between tasks and hence the network architectures differ significantly with different tasks. In general,
different level of sharing works best for different tasks [1]. This problem creates a need for a more
generalized model which can work for different types of tasks efficiently.

Recently, a cross-stitch unit was introduced in CNNs [1]. Conventionally, multiple layers were shared
among networks of two tasks, assuming all these layers to contribute equally in both of the tasks. A
cross stitch unit combines representations from multiple networks via a learnable matrix. This unit
learns how much to share among related tasks without assuming any prior relationship between the
tasks.

Additional recent work motivates representation sharing by learning the tasks relationship. The
key idea behind this is that networks for related tasks should have similar representation in the
intermediate layers and their weight should be related. This includes a model that reduces the
differences in weights between similar tasks and learns a task relationship matrix [10]. Similarly,
work on domain adaptation [11], another subtype of transfer learning, models the relatedness of
two different domains with a regularization on the distance between the weights of the layers for
each domain. The proposed method applies a well designed loss function to prevent the weight
wandering too far away from each other, thus convergence can be achieved. In this paper, to show the
effectiveness of adding weight regularization on a network with cross-stitch, we have performed two
similar tasks of facial landmark detection and attribute classification over the facial landmark dataset
[7] with different network architectures and compared the results to a single task network.

3 Problem Formulation

3.1 Split Network
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Figure 1: Split network model

We adopt the split network architecture from [7], assuming facial landmark detection as the main
task and the attribute classification are auxiliary tasks. The goal is to optimize the main task which
is facial landmark detection. Let the auxiliary tasks be a € A where A is the set of all the auxiliary
tasks. For this problem the problem can be formulated as
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where ¢" is the loss function of the main task, £* is the loss functions of auxiliary tasks, and A*
is the scaling factor corresponding to the a-th task. The scaling factor denotes the importance of
that particular auxiliary task. This loss function allows joint representation of linear regression and
classification error. {x;}¥ ; is the shared input feature map for N samples and the corresponding
output labels are {y!,y?, y?, y, yi}. {yl} is the regression output that denotes facial landmark
and {y?,y?,y¥, y5} are attribute classification of set A. The regression output y! € R is the 2
dimensional coordinates of five facial landmarks: left eye, right eye, nose, left mouth corner and right
mouth corner, y¢, y%, y; € {0, 1} are binary output representing gender, wearing glass and smiling
respectively, and y € {0,1,2, 3,4} denotes five possible output for pose: {0°, £30°, £60°}. The
loss function for linear regression is least mean square and for the attribute classification cross entropy
loss function is used. The cost function can be represented as
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3.2 Cross-stitch Network
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Figure 2: Cross-stitch network model

In a traditional multi-task learning framework, a joint loss is defined over all the task and the
parameters are learned from that loss. However we define two separate CNN’s for the two tasks and
add cross-stitch units (Eq[3) which share the representation among the tasks [1].
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The sharing is modelled as a linear combination of the activation map (:Ui{, xg) of two networks
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where EEZ, 5% is fed to the next layer. The linear combination parameter is learnable through back
propagation. The backpropagation can be modelled as follows
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Hence, the networks learns how much information to share among streams of different tasks by
changing « [1].

3.3 Weight Regularization

We also propose a indirect weight sharing with or without the presence of cross stitch. Weight sharing
is mainly popular for multi domain tasks [10] where inputs are different but the tasks are quite similar
which makes us believe that the weights might be similar. Our proposal is mutual regularization the
weights of the network in order to share representations indirectly. To regularize the weight of the
network, we propose another cost function L,, which will be added to this network while training.

L= Ltaskl + Ltaskl + Lw (5)
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Figure 3: Cross-stitch network with weight regularization model
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where Ligsx1 and Lygsko are cost function for the two tasks, L,, is mutual loss function for the weight

in two streams. The weight loss can be Ly norm, rw(ijSkl, 0;”5’“2) = ||VVWS]€1 -
however an Ly norm penalize a small difference among weights which harms the multi-task learning
if the tasks are not very related. An exponential loss can add more flexibility while still maintaining
closeness of the weights. In that case, the loss function can be expressed as rw(W]’?a“”kl, 9§a5k2) =

exp(||Wiaskl — yytask2 Hz) — 1. However, we add an extra layer of learnability or flexibility to this
loss function by performing a linear transformation on the weights. The final loss function can be
expressed as
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where a; and b; are learnable scalar parameters and are different for each layer (j € €) . These

parameters are learned while training the network. We formulate the overall loss function for training
in detail in the next section where we discuss the dataset.

4 Dataset

We discuss the facial landmark dataset and formulation of loss function for this dataset for the split

network, cross-stitch and cross-stitch with weight regularizer.
: of
-

4.1 Facial Landmark Detection and Attribute Prediction
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Figure 4: Multi-task facial landmark detection dataset[7]

Facial landmark is related to the attribute classification. For example, the pose of the face greatly
affects the facial landmark. We believe facial landmark detection [7] can be facilitated by facial
attribute (smiling, gender, glasses, pose) classification through multi-task learning. We use the dataset
from [7]. Data annotation has five facial landmark coordinates and four attributes of gender, smiling,
wearing glasses, and head position. [7] considers facial landmark detection (FLD) as a main task but
lets the network train on facial attribute classification task alongside by splitting the last layer into
linear regression for FLD and logistic regression for the other attributes. The attribute classification
act as auxiliary tasks.

A task constrained loss function was formulated to allow the errors of related task to be back
propagated jointly. However one potential problem might be deterioration of FLD or classification



due to over sharing of feature representations. Besides, the methodology suffers from lack of
convergence due to the early convergence of auxiliary tasks. If the auxiliary tasks converge earlier
than the main task of facial landmark regression the other networks start to overfit the main task.
We propose two separate CNN chain and apply cross-stitch to share information among them. As
currently cross stitch has been developed for two tasks, we consider FLD as one task and attribute
classification combining all the 4 as second task and we apply cross-stitch to correlate the two tasks.
We will also consider training them with different combinations of attributes.

Our approach differs from the original MTFL [7] paper by the fact that we are making the correlation
among weight more flexible with cross-stitch. We hope that FLD task will not be hampered much by
the other tasks and other tasks will also benefit from FLD. To optimize the FLD main task and attribute
classification tasks (a € A), in our proposed architecture, the loss functions can be formulated as
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corresponding labels of landmark detection and attributes: ‘pose’, ‘gender’, ‘wear glasses’, and
‘smiling’. The training dataset available from [7] consists of 10000 annotated images.

4.2 Evaluation

Here we discuss our proposed evaluation methodology for face landmark and attribute classification
tasks pair. As for the error metric for the FLD task we follow a similar metric as in [7]. The mean
error is measured by the Euclidean distance of the predicted landmark from ground truth, normalized
by the boundary box width. If the mean error is above 5%, it will be reported as failure. We will be
evaluating our final method with the baseline comparison against single task FLD. This would verify
whether the FLD accuracy is improved or remains same by applying multi task methodology. We
also intend verify the improvement due to indirect weight relating with cross stitch. A more extensive
fine tuning of the parameters, and learning rate can be done to improve the absolute performance of
each method.

S Design Decision

We design three different types of multi-task network architecture on Tensorflow. The input is a
40 x 40 image. A boundary box regression is applied to crop the image from the dataset. The 10,000
annotated images are used to train the networks from scratch. Each image is annotated with five facial
landmark, i.e. left eye, right eye, nose, left mouth corner and right mouth corner and four attribute
classifications, gender, glass, smiling and pose. The attributes gender, smiling and glasses each have
two possible values (boy or girl, etc.). Pose has five possible values: 0, +30° and +60°. The feature
extraction stage consists of 4 convolution layers, 3 pooling layers and a fully connected layer.

5.1 Split Network

Conventional multi-task learning implies splitting the network at some layer depending on the task at
hand. The decision at which layer to split is made by multiple simulations and observing in which
case the performance improves. The state-of-the-art facial landmark detection with facial attribute
classification uses a network split at the last fully connected layer as their initial architecture. We
adopted the same architecture and similarly split at the last layer. The last fully connected layer is used
in linear regression for facial landmark detection and in logistic regression for attribute classification.
Intuitively every auxiliary attribute classification tasks have different levels of difficulty and have
different effect on the facial landmark prediction. For example, predicting wearing glasses is easier
then prediction whether a person is smiling or not. Also, a closer look at the dataset shows that, except
gender, all the attributes have a mismatched positive-negative sample ratio. We use five variations of
the split architecture where we combine the main task with a different auxiliary attribute classification



task. We combine FLD with pose, gender, glass, smile, and all separately. Due to uncertainty of the
effect of the auxiliary task and fast convergence, the loss contributed by the attribute classification is
scaled down to give more importance to the main landmark regression task.

5.2 Cross-stitch Network

Two exact same networks are used for cross-stitch where each network is trained for main task and
auxiliary task with cross stitch units added after every layer. Following [1], we maintain one cross
stitch unit per channel. For example, in pooll, we have 16 cross-stitch units for the 16 channels.
However, this also requires extensive experimentation based on the ease of convergence e.g. in [1]
the surface normal prediction and semantic segmentation works better by maintaining one cross stitch
unit per channel however for object detection and attribute classification only one cross-stitch unit
per layer was maintained to stabilize the learning process. Each channel has extra four learnable
hyperparameters o.

The training objective function is similar to Eq 8] where the first network has least mean square error
function and the second network has cross entropy loss function. Similar to split architecture, five
variantions of cross-stitch network is used, namely FLD+pose, FLD+gender, FLD+smile, FLD+glass
and FLD+all. We initialize ag as 0.9 and alphap as 0.1 where g and «p represents the cross-stitch
parameters of same layer and different layer, respectively, i.e. s = aaa = app = 0.9 and
D = AB — OBA = 0.1.

5.3 Weight regularized Network with Cross-stitch

In the third type of architecture, weight regularization is added with the total loss function as
mentioned in Eq[6] The total loss is jointly backpropagated through both the networks while training.
Also, similar to first two type of architectures mentioned above, five variants of it are designed. Note
that in all the three cases the loss functions are scaled lower to give more importance on the main
landmark regression task.

6 Results and Analysis

6.1 Split Network predictions
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Figure 5: Facial landmark detection mean error and failure from split network

Compared to the single task facial landmark detection baseline, split networks perform worse on
facial landmark detection. The split networks have higher overall mean error and failure compared
to the baseline. For example, the base line failure in left eye detection is 0.186 whereas the failure
in left eye detection when splitting for gender, smile, glasses, pose, and all attribute classification is
0.376, 0.317, 0.3015, 0.270, and 0.306, respectively, which are all higher than a failure of 0.186.

This drop in performance is occuring due to the different convergence rates of the two tasks. The
training for the classification task would converge with less epochs than the landmark regression
task, hence the classification task would overfit and harm the performance of the landmark regression
task. Also, the drop in perform may also be contributed by the joint loss. Some performance on the



landmark regression task could be sacrificed to improve the performance of the classification task.
This may be occuring because the two tasks share the same network. Overall, some fine tuning may
be necessary to migitate the affects of negative transfer between the tasks.

6.2 Cross-stitch Network vs Weight regularized Network with Cross-stitch predictions
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Figure 6: Mean error from Cross-stitch Network vs Weight regularized Network with Cross-stitch
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Figure 7: Failure from Cross-stitch Network vs Weight regularized Network with Cross-stitch

Depending on which facial landmark, the performance of the Weight regularized Network with
Cross-stitch is similar to the single task facial landmark detection baseline on average. Though, the
Weight regularized Network with Cross-stitch shows improvements over the Cross-stitch Network.
In the case with all attributes used in the classification task, failure in the left eye landmark detection
with the Cross-stitch Network is 0.378 whereas the failure with the Weight regularized Network with
Cross-stitch is 0.250 . This shows an improvement in performance when weight regularization is
introduced to the Cross-stitch Network.

Since the weight’s scalar parameters a and b from equation 8 were initialized as 1 and 0, the
convergence rate of attribute classification task slowed down because the weights of the two network
were restrain to be similar at first. The weights differentiated in later epochs which resulted in more
epochs for the landmark regression task, so the training error can be furthur reduced. Meanwhile, the
landmark regression task also shares its representations with the attribute classification task more in
the last layer through the cross-stitch unit to improve generalization and performance.

6.3 Weight values

In general, the cross-stitch unit weights did not change. As mentioned in section 5.2, we initialized
ags as 0.9 and ap as 0.1. After training has been completed, most g and alphap values stayed
around 0.9 and 0.1, respectively. Though, the ag and ap in the last fully connected layer of the
network for the attribute classification tasks updated to around 4 and 1, respectively. Unlike the other



layers which retained ag =~ 0.9, ap = 0.1, the last layer took 80% of the original activation maps
and 20% of the other network’s activation maps at higher magnitudes of 4 and 1. This means that the
attribute classification task has improved performance when sharing and receiving more from the
landmark regression task at the last layer.

Also, the weight’s scalar parameters a displayed a similar behavior. Note that the weight’s scalar
parameters b generally stay around O so it does not contribute much to the weight regularization.
Though, the parameters a grew at each layer. For example, in the FL+all case, the parameters a are
0.56633, 0.712272, 0.733182, 0.718621, and 0.768055 from the first layer to the last. It can be seen
that the value is growing towards 1 which means that it is desirable for the weights to be similar at the
later layers. Hence, similar to the result above, attribute classification task has improved performance
when it shares simiar weights as the landmark regression task at later layers.

6.4 Improvements

A few possible improvements involve fine tuning the parameters. For example, the cross-stitch units
could have a higher learning rate compared to the rest of the network. This would emphasis the
importance of the cross-stitch units and update the cross-stitch units more through backpropogation.
Similarly, the learning rates of the scalar parameters in the weight regularization could be higher for
similar reasons.

In addition to varying the learning rates, the initialized values of the cross-stitch units and weight
regularization scalar parameters could be varied. Instead of enforcing some sharing between the
networks with intialized values of g as 0.9 and ap as 0.1, it could set «vg as 1 and ap as O which
means no sharing at first and allow the networks to learn how much to really share. Overall, parameter
fine tuning could show improvements over the current parameters.

7 Conclusion

In this paper we have done two different types of network for facial landmark detection under the
umbrella of multi-task learning. The first one was traditional split architecture where we split the
network at the last layer assuming maximum representation sharing among the tasks and in the
second case we applied a cross-stitch unit adopted from a recent research. This unit generalizes
the multi-task learning irrespective of the degree of matching among the tasks at hand. Finally we
proposed a regularization among the weights to improve the performance of cross-stitch network. It
is shown that weight regularization improves the performance of cross-stitch network without any
task specific fine tuning.
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